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LElTER TO THE EDITOR 

Numerical diagonalization study of the trimer 
deposition-evaporation model in one dimension 
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'IEeodd mysics Omup, Tata lastitote of puodamental Research &mi Bhabha Road Bomboy 
400005. hdia 

Reeeived 21 June 1994 

Abstrad. We study the model of deposition-evapogtian of hi" on a line m t l y  
introduced by Barma et al. Ibe stochDstic maUix of the model can be written in the 
form of lk Hamillonj3n of a quantum hph-f chain with b s p i n  couplings even by 
H = xi[(' - ~ ; a , ; ~ o i ; ~ ) u ~ c ~ ~ a &  + hc]. We study. by exad nomerid diagondimkon 
of H, the variatioo of the gap m thengeavalus spat" with the system size kn M g s  of size 
up to 30. For the seetor cmRspooding to the initial condition in which all sites are empty. we 
find that the gap vanishes as L? where the gap exponent L is approximately 2.55 i 0.15. This 
model isequivalcnt to an interfanal . ron&ning model where the dynamical variables ilt each 
site are matrices. From ow estimaD for the gap exponenr we conclode that the model belongs 
to a new umversaliry class distina f" dm sludied by Kardar dd. 

Many physical processes such as heterogeneous catalysis, chemical reactions on polymer 
chains, adsorption on solid surfaces, etc involve evaporation and deposition of reactants 
on a substrate. Recently Barma et nl have introduced a simple model which shows that 
the excluded volume effect together with dissociation and recombination of the reactants 
on the surface can give rise to very interesting dynamical behaviour. In their model they 
have studied a random deposition-evapration process of k identical atoms (called k-mers, 
k = 1.2.3.. ,) on a surface [1,2]. It has been shown that in onedimension when k 2 3 
the phase space breaks up into an exponentially large number of dynamically disconnected 
sectors and the model has an infinite number of conserved quantities 131. It is found that in 
this case the auto-correlation function in the steady state decays with time t as t-Il4, t-In, 
t4.$ a as e-", depending on the initial condition. The behaviour of the auto-correlation 
function for different initial conditions is understood in terms of the random walk of the 
substrings which constitutes what is calted an irreducible string [4,5]. However, fa the 
steady state corresponding to the empty configuration as the initial condition. this analysis 
does not apply. In this case, for the himer model, Monte Carlo simulations show power-law 
decay of the autocorrelation function with an aMximate value for the exponent 0.6 IS]. 
A theoretical understanding of this exponent is still lacking. Thus our main motivation is 
to understand the dynamics of trimer model in this sector. We have done a study of the 
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trimer model on a onedimensional lanice, by exact diagonalization of the stochastic matrix 
in this sector. 

In this letter we restrict ourselves to the study of trimers (k = 3) on a line (d = 1). We 
consider a ring of L sites. At each site i is a dynamical variable n; which takes the values 
0 or 1, depending on whether the site is occupied or not. A configuration (nil evolves 
stochastically in time by Markovian dynamics as follows: any three adjacent empty sites 
can become occupied with a rate E and any three adjacent occupied sites can become empty 
with a rate E‘. 

If P(C, r) is the probability that the ring has configuration C at time f ,  then P(C, t )  
satisfies the master equation 

1 

where the transition rate matrix 8 for the case E = E‘ can be written as 
L lV=,C[(l- 

~ 

i=1 

where c; and U: are the Pauli annihilation and creation operators at site i. 
Since k is a stochastic matrix where the transition rates satisfy detailed balance. all 

its eigenvalues are real and non-positive. The infinite number of conservation laws of this 
Hamiltonian can be encoded into a single conservation law of the irreducible string [3]. For 
any configuration the irreducible string is defined as follows: from the L-bit string of Os 
and Is representing the configuration, we recursively delete any consecutive occurrence of 
three Os or 1s until no further deletions are possible. The irreducible string is conserved 
under dynamics and can be used to label uniquely each of the dynamically disconnected 
sectors. There is a large degeneracy for the eigenvalue 0, reflecting the large number of 
conservation laws in the model. An example of an eigenvector with zero eigenvalue is any 
configuration which has no three adjacent Os or Is. Such a state cannot evolve in time. The 
number of such configurations has been shown to vary as pL for large L ,  where f i  is the 
golden mean (&+ 1)/2 [1,2]. 

We can exactly diagonalize @ in some almost totally jammed sectors. For example, 
if the sector corresponds to an irreducible string of length L - 3, then it is easy to see 
that the corresponding stochastic matrix, in general, has a size of O(L2).  Under dynamics 
the position of the reducible block on the ring changes and its motion can be described 
as a random walk [1,2]. Lo this case it can be shown that the mean square displacement 
increases linearly with time. This corresponds to a dynamical exponent of z = 2. Sectors 
with irreducible string length L - 6 correspond to diffusion of two interacting random 
walkers. In this case the size of the stochastic matrix will be of O(L3). When the two 
walkers are next to each other, they stay there longer, which corresponds to an attractive 
interaction. The dynamical exponent will also be 2 in this case. 

The most interesting sector corresponds to the case when the length of the irreducible 
string (1) is very small compared to L. In this case Monte Carlo simulations 151 have shown 
that the attractive interaction between these ‘random walkers’ gives rise to a sub-diffusive 
behaviour, with the dynamical exponent z > 2. In this paper, we estimate this exponent by 
diagonalizing numerically the stochastic matrix for small systems and assuming finite-size 
scaling. 

For numerical diagonalization it is desirable to reduce the size of the matrix as much 
as possible by making use of the known symmetries and conservation laws of the model. 
For periodic boundary conditions, and for the special case of deposition and evaporation 
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r a t s  equal ( E  = f'), in addition to the conservation law of the irreducible string, one can 
make use of the three symmetries of the system namely translation. reflection and flip, to 
reduce the size of the matrix by about a factor of 2L. Let f, p and i be the operators 
corresponding to these symmetries. They are defined by 

Tln,.n~,...,n~....,n') =ln*.n~, ..., n**,,....n',n,) 
Pin,, n2,. . . , n , ,  . . . , nL)  = InLl nL-,. . .. , n,,  .., nJ  (3) 
&,, n,, . . . , n; ,  . . . , n,) = I;,, ii,, . . . , i,, ...,E,) 
Here In,, n,, . . . , n,. . . . , n,) is a vector in the Hilbert space representing the configuration 
{si]. These operators satisfy the following algebra: 

.. 

.. 
where it = 1 - n, . 

[f, $1 [F, F] = 0 p F = $2 = 1 +p = pp-1 .  (4) 

Note that ? and do not commute. The three operators which simultaneously commute 
with @ and with each other are F, p and (? + ?-I). Let their corresponding eigenvalues 
be f ,  p and Zcos(k), respectively, where f = +I, p = &1 and k = Znn/L; n = 
0, 1 ,  . . . , L - 1. The simultaneous eigenvectors of these three operators are of the form 

L 
Ik, f ,  p ,  +) = (1 + f h ( I  + p p )  T'cos(kr)lC) 

Ik, f ,  p .  -) = (1 + f h ( 1  + p p ) z  T'sin(kr)lC) 
(5) 

r=1 

L 

,=l 

where IC) is any of the vectors I{ni)). 
We have used the states (5) as the basis for the stochastic matrix. For the null sector, 

the matrix splits into 2L blocks, corresponding to combinations of the two eigenvalues of k 
and the L eigenvalues of f. Of these, due to a Kramers-type degeneracy in the eigenvalues 
for the momentum values k and Z n  - k, we can fix p to always be equal to unity, and 
sweep over only half of the allowed momentum values. For lattice lengths which are not 
multiples of three, there is an additional degeneracy in the eigenvalues for f = 1 and -1, 
since these states and their flipped counterparts are not connected by the dynamics. Since 
the size of the null sector - (27/4)L/3L-3/2 [3], the size of each block - (27/4)L/3L-5fl. 
For any lattice length, each block of the matrix is real and sparse, since all rows or columns 
have at most L non-zero entries. 

The difference between the largest and the second largest eigenvalue of the complete 
matrix is proportional to the inverse relaxation time. The largest eigenvalue is zero and 
it lies in the block k = 0, f = 1 .  To find the second largest eigenvalue of the full 
matrix, we have computed numerically the largest eigenvalue in all the other blocks, and 
the second-largest eigenvalue in the k = 0, f = 1 block Simple iteration of the eigenvector 
after suitably shifting all the eigenvalues, converged sufficiently fast for these blocks. This 
method preserves the sparseness of the blocks, which is necessary to keep the memory 
requirement of the program as low as possible. For the k = 0, f = 1 block, we computed the 
second largest eigenvalue, by ensuring orthogonality of the iterated vector to the eigenvector 
corresponding to the zero eigenvalue. 

We have computed these eigenvalues for lattice sizes ranging from L = 3-30. When L 
is a multiple of 3, the irreducible string in the null sector has length zero and in this case 
we have diagonalized the stochastic matrix for both the f = 1 and -1 case. For the case 
f = -1 the smallest eigenvalue occurs for k = 2n(l - 1/L)/3, and for the case f = 1 it 
occurs for k = b / 3 .  When L = 3n + 1 and 3n + 2, where n is an integer, the irreducible 
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0.15 Rgure 1. A plot of the effective exponent zL versus 
IJL, where L is h e  length of the lanice. 
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Table 1. 

Length of 
thelartice hhtrixsize A~ EL 

f = - I  

3 
6 
9 

12 
IS 
18 
21 
24 
21 
30 

1 
1 
2 

10 
35 

170 
815 

4 176 
21872 

118175 

-6.MN)OO 
-2.wooo 158492 
-0.871 13 2.04977 
-0.43876 L38QOO 
-0.26065 2.33375 
-0.169 32 2.36607 
-0.11744 2.37373 
-0.085 45 2.31929 
-0.064 55 2.383 33 
-0.05020 2.38672 

sixing in the sector where the initial state is all empty has length 1 and 2, respectively. In 
this case, as explained earlier, the eigenvalues for f = 1 and -1 are degenerate. We have 
estimated the gap exponent z for each of these four sets of data, by assuming the scaling 
relation h - L-z. We define the effective exponent 

The sizes of the matrices, eigenvalues and estimate of the dynamical exponent z~ are shown 
in the tables below. The ZL values are also plotted as a function of 1/L in figure 1. 

It is clear from an inspection of these tables that while the convergence in each sector 
is reasonably good, there is a large difference between them if we compare them between 
different sectors. To see if this could be due to the presence of a correction to the asymptotic 
scaling form, we have tried to incorporate various forms for the correction into the scaling. 
But none of these fit the data well, and at the same time decrease the discrepancy in z 
between different sectors. This can be seen h m  the fact that the effective values of ZL do 
not show a significant tendency to converge to a single value as L increases, for the largest 
sizes reached in our study. This is somewhat surprising as in previous studies very good 
convergence has been found for much smaller L (- 15) [8,9].  

One possible explanation for this is that different sectors have different gap exponents. 
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lbhle 2 

f =-1 
Length O f  
thelattice Matrixsize Amin ZL 

6 I 
9 2 

12 10 
15 35 
I8 173 
21 811 
24 4186 
27 21 874 
30 118175 

-2.Mx)oo 
-1.25553 1.14828 
-0.67412 2,16180 
-0.442 17 1.883 75 
-0.29577 2.21307 
-0.20803 2.28276 
-0.15213 2.34360 
-0.11485 2.38637 
-0.08903 2.41725 

Table 3. 

Length of 
thelattim Matrixsize A,, ZL 

4 1 -1.wooo 
7 4 -0.23008 2.62557 

IO 17 -0.09277 2.54655 
13 84 -0.04754 2.54625 
16 428 -0.02802 2.54829 
19 2305 -0.01806 2.55571 
22 12744 -0.01240 2.56472 
25 72311 -0.00892 2.57433 

Table 4. 

Length of 
thelanice Mahixsile .*mi. ZL 

5 
8 

11 
14 
17 
U) 
23 
26 

1 -1.00000 
4 -0.28476 2.67255 

21 -0.11943 2.72855 
103 -0.06215 2.70857 
553 -0.03678 2.701 22 

3014 -0.02372 2.69857 
16985 -0.01627 2.69933 
97419 -0.01168 2.70193 

This is quite intriguing, but somewhat unlikely. The possible reason behind this could be 
the existence of an infinite number of conserved quantities in the model. It is hoped that 
further studies will clarify this point. 

However, from our data it can be concluded that the gap exponent for all these sectors 
fall within the range z = 2.55i0.15. To get a more precise estimate for z one needs fiuther 
study either of larger size lattices, or by Monte Carlo simulations, or analytical methods. 

In figure 2 we have shown a plot of h versus k (dispersion curve) for three different 
lattice sizes. This is related to the spectrum of the excitations of the quantum Hamiltonian 
I@. It is seen that the spectrum for different sizes is qualitatively similar, but shows a 
complicated, yet not understood smcture as a function of k. We have also studied the 
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Figure 2. Dispersion curve of the quantum Hamiltonian 
corresponding to the vimer model (equation (2)). 

same model for the case of unequal deposition-evaporation rates (in this case there is no 
flip symeny) .  The range of estimated value of z is the same as that for equal deposition- 
evaporation rates. 

The stochastic evolution of the trimer model can be mapped to the stochastic dynamics 
of a string, both ends fixed to the same poinf by defining a matrix variable Ut at each site 
[3]. This matrix Ut has information about the length of the irreducible string corresponding 
to the substring from site 1 of the lattice up to site i. Under the dynamics the length of this 
irreducible string changes, and is related to the change in the matrix variables Vi. Thus this 
model corresponds to a generalization of the wz model where the scalar height variables 
are replaced by matrix variables. It is well hown  that z = 1.5 for the KPZ model [6]. Our 
results show that this model falls under~a new universality class. It is also different from the 
model studied recently by Doherty et al which is also a generalization of the wz equation 
to n component variables. In their model, the dynamical exponent z = 9 in one dimension, 
independent of n, though in higher dimensions it depends on n [7]. 
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